Non-contact bimodal magnetic force microscopy
نویسندگان
چکیده
منابع مشابه
Repulsive bimodal atomic force microscopy on polymers
Bimodal atomic force microscopy can provide high-resolution images of polymers. In the bimodal operation mode, two eigenmodes of the cantilever are driven simultaneously. When examining polymers, an effective mechanical contact is often required between the tip and the sample to obtain compositional contrast, so particular emphasis was placed on the repulsive regime of dynamic force microscopy....
متن کاملMagnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes
Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...
متن کاملNon-contact Friction Force Microscopy Exploiting Lateral Resonance Enhancement
A method for sensing the dissipation occurring when a sharp atomic force microscopy (AFM) tip is oscillated laterally above a surface at distances typical of non-contact mode AFM operation is established and demonstrated. Dissipation is detected by measuring the damping of lateral resonant modes of the AFM cantilever, excited independently after the lateral resonant mode identification, when th...
متن کاملMagnetic force microscopy
The remarkable outbreak of nanotechnologies and among these of nanobiotechnologies has been allowed by the invention, development, continuous improvement of different techniques and instrumentations for the imaging of materials and systems at the nanoscale. Among such techniques, atomic force microscopy (AFM) represents a well established technique for the imaging of a wide range of samples as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2014
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4869353